神刀安全网

【译】小白学SVM系列教程(一)

英文原文链接: SVM – Understanding the math – Part 1 – The margin

译者注:本人研一,项目原因需要了解SVM知识,奈何向量相关知识全都还给本科老师,这一部分完全没看懂,直到看到了国外某博客写的这个SVM系列教程,深入浅出,只要有初中数学基础即可看懂,特别适合我这样的。于是翻译该系列教程,帮助和我一样经历的同学早日掌握SVM。

全系列目录:

  • 小白学SVM系列教程(一)—— 间隔(margin)

  • 小白学SVM系列教程(二)—— 向量

  • 小白学SVM系列教程(三)—— 最优超平面

介绍

这是我写的SVM背后的数学原理系列文章的第一篇。有许多人说要了解SVM,充分的数学背景知识是必要的,不过我将尽量由浅入深慢慢地讲解,以便每一个细节都是清楚明白的,甚至对于初学者来说也能够理解。

支持向量机(SVM)的目标是什么?

支持向量机的目标是找出能够最大化训练集数据间隔(margin)的最优分类超平面。

首先,我们能够从定义中看出SVM需要训练数据,也就是说它是一种监督学习算法。

知道SVM是一种分类算法也是十分重要的,这意味着我们将使用它去预测某个东西是否属于特定的类别。

例如,我们拥有如下的训练数据:

【译】小白学SVM系列教程(一) 我们已经绘制了人群的身高和体重散点图,也用不同的标记区分了男人和女人。

有了这些数据,我们将能够使用SVM回答下面几个问题:

给定一个具体的数据点(身高和体重),这个人是男人还是女人?例如:如果知道某人身高175cm体重80kg,这个人是男人还是女人?

什么是分类超平面?

通过观察上图,我们能够发现分类这些数据是可能的。例如,我们可以描绘一条直线然后所有代表男人的点都在直线的上边,代表女人的点都在直线的下边。

这条直线被称为 分类超平面 ,如下图所示:

【译】小白学SVM系列教程(一)

如果它就是一条线,为什么我们称它为超平面呢?

超平面是平面的抽象。

  • 在一维空间,超平面是一个点

  • 在二维空间,它是一条线

  • 在三位空间,它是一个面

  • 在更高维度上,你能够称它为超平面

【译】小白学SVM系列教程(一)

在一维空间中,点L是一个分类超平面。

什么是最优分类超平面?

你能够找到一个分类超平面,但这并不意味着它是最好的那个!在下面的例子中有几个分类超平面,每个都成功地将我们的数据集分类为男人和女人两部分。

【译】小白学SVM系列教程(一)

存在许多的分类超平面

假设我们选择绿色的超平面并且使用它给真实数据分类。

【译】小白学SVM系列教程(一)

这个超平面并不能够很好的分类数据。

这次,它分类出现了错误。明显,我们能够看出,如果我们选择了一个靠近某一类数据点的超平面,它也许并不能很好地分类数据。

因此我们将会尝试选择一个 尽可能远离每一种类别数据点的 超平面:

【译】小白学SVM系列教程(一)

这一个看起来更好。当我们用它分类真实数据中时,它仍然进行了完美的分类。

【译】小白学SVM系列教程(一) 黑色的超平面比绿色的超平面分类更准确。

这就是为什么SVM的目标是 寻找最优分类超平面

  • 因为它能够正确地分类训练数据

  • 同时因为它能更准确地分类尚未出现的数据。

什么是间隔和它是如何帮助选择最优超平面?

【译】小白学SVM系列教程(一)

我们的最优超平面的间隔

给定一个超平面,我们能够计算出超平面到最近的一个点的距离。一旦我们算出这个值,如果我们将距离乘以2我们就可以得到 间隔 (margin)。

基本上,间隔是一个“无人区”。在间隔内不存在任何数据点。

对于另一个超平面,间隔将看起来像这样:

【译】小白学SVM系列教程(一)

如图所示,间隔B比间隔A小得多。

我们能够观察到以下结果:

  • 如果一个超平面十分接近某个数据点,它的间隔将很小

  • 超平面距离数据点越远,间隔就越大

这意味着 最优超平面将是拥有最大边距的那个超平面

这也是为什么SVM的目标是 找到最大化训练集数据间隔的最优分类超平面

到这里关于SVM背后的数学原理的介绍就结束了,目前没有有多少公式,但是在下篇文章我们将增加一些数字然后试着从数学的视角(几何和向量)来进行理解。

转载本站任何文章请注明:转载至神刀安全网,谢谢神刀安全网 » 【译】小白学SVM系列教程(一)

分享到:更多 ()

评论 抢沙发

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址