神刀安全网

Netty那点事(三)Channel与Pipeline

Channel是理解和使用Netty的核心。Channel的涉及内容较多,这里我使用由浅入深的介绍方法。在这篇文章中,我们主要介绍Channel部分中Pipeline实现机制。为了避免枯燥,借用一下《盗梦空间》的“梦境”概念,希望大家喜欢。

一层梦境:Channel实现概览

在Netty里, Channel 是通讯的载体,而 ChannelHandler 负责Channel中的逻辑处理。

那么 ChannelPipeline 是什么呢?我觉得可以理解为ChannelHandler的容器:一个Channel包含一个ChannelPipeline,所有ChannelHandler都会注册到ChannelPipeline中,并按顺序组织起来。

在Netty中, ChannelEvent 是数据或者状态的载体,例如传输的数据对应 MessageEvent ,状态的改变对应 ChannelStateEvent 。当对Channel进行操作时,会产生一个ChannelEvent,并发送到 ChannelPipeline 。ChannelPipeline会选择一个ChannelHandler进行处理。这个ChannelHandler处理之后,可能会产生新的ChannelEvent,并流转到下一个ChannelHandler。

Netty那点事(三)Channel与Pipeline

例如,一个数据最开始是一个 MessageEvent ,它附带了一个未解码的原始二进制消息 ChannelBuffer ,然后某个Handler将其解码成了一个数据对象,并生成了一个新的 MessageEvent ,并传递给下一步进行处理。

到了这里,可以看到,其实Channel的核心流程位于 ChannelPipeline 中。于是我们进入ChannelPipeline的深层梦境里,来看看它具体的实现。

二层梦境:ChannelPipeline的主流程

Netty的ChannelPipeline包含两条线路:Upstream和Downstream。Upstream对应上行,接收到的消息、被动的状态改变,都属于Upstream。Downstream则对应下行,发送的消息、主动的状态改变,都属于Downstream。 ChannelPipeline 接口包含了两个重要的方法: sendUpstream(ChannelEvent e)sendDownstream(ChannelEvent e) ,就分别对应了Upstream和Downstream。

对应的,ChannelPipeline里包含的ChannelHandler也包含两类: ChannelUpstreamHandlerChannelDownstreamHandler 。每条线路的Handler是互相独立的。它们都很简单的只包含一个方法: ChannelUpstreamHandler.handleUpstreamChannelDownstreamHandler.handleDownstream

Netty官方的javadoc里有一张图( ChannelPipeline 接口里),非常形象的说明了这个机制(我对原图进行了一点修改,加上了 ChannelSink ,因为我觉得这部分对理解代码流程会有些帮助):

Netty那点事(三)Channel与Pipeline

什么叫 ChannelSink 呢?ChannelSink包含一个重要方法 ChannelSink.eventSunk ,可以接受任意ChannelEvent。“sink”的意思是”下沉”,那么”ChannelSink”好像可以理解为”Channel下沉的地方”?实际上,它的作用确实是这样,也可以换个说法:“处于末尾的万能Handler”。最初读到这里,也有些困惑,这么理解之后,就感觉简单许多。 只有Downstream包含 ChannelSink ,这里会做一些建立连接、绑定端口等重要操作。为什么UploadStream没有ChannelSink呢?我只能认为,一方面,不符合”sink”的意义,另一方面,也没有什么处理好做的吧!

这里有个值得注意的地方:在一条“流”里,一个 ChannelEvent 并不会主动的”流”经所有的Handler,而是由 上一个Handler显式的调用 ChannelPipeline.sendUp(Down)stream 产生,并交给下一个Handler处理 。也就是说,每个Handler接收到一个ChannelEvent,并处理结束后,如果需要继续处理,那么它需要调用 sendUp(Down)stream 新发起一个事件。如果它不再发起事件,那么处理就到此结束,即使它后面仍然有Handler没有执行。这个机制可以保证最大的灵活性,当然对Handler的先后顺序也有了更严格的要求。

顺便说一句,在Netty 3.x里,这个机制会导致大量的ChannelEvent对象创建,因此Netty 4.x版本对此进行了改进。twitter的 finagle 框架实践中,就提到从Netty 3.x升级到Netty 4.x,可以大大降低GC开销。有兴趣的可以看看这篇文章: https://blog.twitter.com/2013/netty-4-at-twitter-reduced-gc-overhead

下面我们从代码层面来对这里面发生的事情进行深入分析,这部分涉及到一些细节,需要打开项目源码,对照来看,会比较有收获。

三层梦境:深入ChannelPipeline内部

DefaultChannelPipeline的内部结构

ChannelPipeline 的主要的实现代码在 DefaultChannelPipeline 类里。列一下DefaultChannelPipeline的主要字段:

    public class DefaultChannelPipeline implements ChannelPipeline {          private volatile Channel channel;         private volatile ChannelSink sink;         private volatile DefaultChannelHandlerContext head;         private volatile DefaultChannelHandlerContext tail;         private final Map<String, DefaultChannelHandlerContext> name2ctx =             new HashMap<String, DefaultChannelHandlerContext>(4);     } 

这里需要介绍一下 ChannelHandlerContext 这个接口。顾名思义,ChannelHandlerContext保存了Netty与Handler相关的的上下文信息。而咱们这里的 DefaultChannelHandlerContext ,则是对 ChannelHandler 的一个包装。一个 DefaultChannelHandlerContext 内部,除了包含一个 ChannelHandler ,还保存了”next”和”prev”两个指针,从而形成一个双向链表。

因此,在 DefaultChannelPipeline 中,我们看到的是对 DefaultChannelHandlerContext 的引用,而不是对 ChannelHandler 的直接引用。这里包含”head”和”tail”两个引用,分别指向链表的头和尾。而name2ctx则是一个按名字索引DefaultChannelHandlerContext用户的一个map,主要在按照名称删除或者添加ChannelHandler时使用。

sendUpstream和sendDownstream

前面提到了, ChannelPipeline 接口的两个重要的方法: sendUpstream(ChannelEvent e)sendDownstream(ChannelEvent e)所有事件 的发起都是基于这两个方法进行的。 Channels 类有一系列 fireChannelBound 之类的 fireXXXX 方法,其实都是对这两个方法的facade包装。

下面来看一下这两个方法的实现(对代码做了一些简化,保留主逻辑):

    public void sendUpstream(ChannelEvent e) {         DefaultChannelHandlerContext head = getActualUpstreamContext(this.head);         head.getHandler().handleUpstream(head, e);     }      private DefaultChannelHandlerContext getActualUpstreamContext(DefaultChannelHandlerContext ctx) {         DefaultChannelHandlerContext realCtx = ctx;         while (!realCtx.canHandleUpstream()) {             realCtx = realCtx.next;             if (realCtx == null) {                 return null;             }         }         return realCtx;     } 

这里最终调用了 ChannelUpstreamHandler.handleUpstream 来处理这个ChannelEvent。有意思的是,这里我们看不到任何”将Handler向后移一位”的操作,但是我们总不能每次都用同一个Handler来进行处理啊?实际上,我们更为常用的是 ChannelHandlerContext.handleUpstream 方法(实现是 DefaultChannelHandlerContext.sendUpstream 方法):

    public void sendUpstream(ChannelEvent e) {         DefaultChannelHandlerContext next = getActualUpstreamContext(this.next);         DefaultChannelPipeline.this.sendUpstream(next, e);     } 

可以看到,这里最终仍然调用了 ChannelPipeline.sendUpstream 方法,但是 它会将Handler指针后移

我们接下来看看 DefaultChannelHandlerContext.sendDownstream :

    public void sendDownstream(ChannelEvent e) {         DefaultChannelHandlerContext prev = getActualDownstreamContext(this.prev);         if (prev == null) {             try {                 getSink().eventSunk(DefaultChannelPipeline.this, e);             } catch (Throwable t) {                 notifyHandlerException(e, t);             }         } else {             DefaultChannelPipeline.this.sendDownstream(prev, e);         }     } 

与sendUpstream好像不大相同哦?这里有两点:一是到达末尾时,就如梦境二所说,会调用ChannelSink进行处理;二是这里指针是 往前移 的,所以我们知道了:

UpstreamHandler是从前往后执行的,DownstreamHandler是从后往前执行的。在ChannelPipeline里添加时需要注意顺序了!

DefaultChannelPipeline里还有些机制,像添加/删除/替换Handler,以及 ChannelPipelineFactory 等,比较好理解,就不细说了。

回到现实:Pipeline解决的问题

好了,深入分析完代码,有点头晕了,我们回到最开始的地方,来想一想,Netty的Pipeline机制解决了什么问题?

我认为至少有两点:

一是提供了ChannelHandler的编程模型,基于ChannelHandler开发业务逻辑,基本不需要关心网络通讯方面的事情,专注于编码/解码/逻辑处理就可以了。Handler也是比较方便的开发模式,在很多框架中都有用到。

二是实现了所谓的”Universal Asynchronous API”。这也是Netty官方标榜的一个功能。用过OIO和NIO的都知道,这两套API风格相差极大,要从一个迁移到另一个成本是很大的。即使是NIO,异步和同步编程差距也很大。而Netty屏蔽了OIO和NIO的API差异,通过Channel提供对外接口,并通过ChannelPipeline将其连接起来,因此替换起来非常简单。

Netty那点事(三)Channel与Pipeline

理清了ChannelPipeline的主流程,我们对Channel部分的大致结构算是弄清楚了。可是到了这里,我们依然对一个连接具体怎么处理没有什么概念,下篇文章,我们会分析一下,在Netty中,捷径如何处理连接的建立、数据的传输这些事情。

PS: Pipeline这部分拖了两个月,终于写完了。中间写的实在缓慢,写个高质量(至少是自认为吧!)的文章不容易,但是仍不忍心这部分就此烂尾。中间参考了一些优秀的文章,还自己使用netty开发了一些应用。以后这类文章,还是要集中时间来写完好了。

参考资料:

转载本站任何文章请注明:转载至神刀安全网,谢谢神刀安全网 » Netty那点事(三)Channel与Pipeline

分享到:更多 ()

评论 抢沙发

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址