神刀安全网

Weka-JRuby, Machine Learning and Data Mining with JRuby Based on the Weka Java Lib

Weka

Weka-JRuby, Machine Learning and Data Mining with JRuby Based on the Weka Java Lib Weka-JRuby, Machine Learning and Data Mining with JRuby Based on the Weka Java Lib

Machine Learning & Data Mining with JRuby based on the Weka Java library.

Installation

Add this line to your application’s Gemfile:

gem 'weka'

And then execute:

$ bundle install 

Or install it yourself as:

$ gem install weka 

Usage

Use Weka’s Machine Learning and Data Mining algorithms by requiring the gem:

require 'weka'

The weka gem tries to carry over the namespaces defined in Weka and enhances some interfaces in order to allow a more Ruby-ish programming style when using the Weka library.

The idea behind keeping the namespaces is, that you can also use the Weka documentation for looking up functionality and classes.

Please refer tothe gem‘s Wiki for detailed information about how to use weka with JRuby and some examplary code snippets.

Development

After checking out the repo, run bin/setup to install dependencies. To install this gem onto your local machine, run bundle exec rake install .

Then, run rake spec to run the tests. You can also run bin/console or rake irb for an interactive prompt that will allow you to experiment.

Contributing

Bug reports and pull requests are welcome on GitHub at https://github.com/paulgoetze/weka-jruby . This project is intended to be a safe, welcoming space for collaboration, and contributors are expected to adhere to the Contributor Covenant code of conduct .

For development we use the git branching model described bynvie.

Here’s how to contribute:

  1. Fork it ( https://github.com/paulgoetze/weka-jruby/fork )
  2. Create your feature branch ( git checkout -b feature/my-new-feature develop )
  3. Commit your changes ( git commit -am 'Add some feature' )
  4. Push to the branch ( git push origin feature/my-new-feature )
  5. Create a new Pull Request

Please try to add RSpec tests along with your new features. This will ensure that your code does not break existing functionality and that your feature is working as expected.

Acknowledgement

The original ideas for wrapping Weka in JRuby come from@arrigonialberto86 and hisruby-band gem. Great thanks!

License

The gem is available as open source under the terms of the MIT License .

转载本站任何文章请注明:转载至神刀安全网,谢谢神刀安全网 » Weka-JRuby, Machine Learning and Data Mining with JRuby Based on the Weka Java Lib

分享到:更多 ()

评论 抢沙发

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址