神刀安全网

神经病院Objective-C Runtime入院第一天—isa和Class

神经病院Objective-C Runtime入院第一天—isa和Class

前言

我第一次开始重视Objective-C Runtime是从2014年11月1日,@唐巧老师在微博上发的一条微博开始。

神经病院Objective-C Runtime入院第一天—isa和Class

这是sunnyxx在线下的一次分享会。会上还给了4道题目。

神经病院Objective-C Runtime入院第一天—isa和Class

这4道题以我当时的知识,很多就不确定,拿不准。从这次入院考试开始,就成功入院了。后来这两年对Runtime的理解慢慢增加了,打算今天自己总结总结平时一直躺在我印象笔记里面的笔记。有些人可能有疑惑,学习Runtime到底有啥用,平时好像并不会用到。希望看完我这次的总结,心中能解开一些疑惑。

目录

  • 1.Runtime简介
  • 2.NSObject起源
    • (1) isa_t结构体的具体实现
    • (2) cache_t的具体实现
    • (3) class_data_bits_t的具体实现
  • 3.入院考试

一. Runtime简介

Runtime 又叫运行时,是一套底层的 C 语言 API,是 iOS 系统的核心之一。开发者在编码过程中,可以给任意一个对象发送消息,在编译阶段只是确定了要向接收者发送这条消息,而接受者将要如何响应和处理这条消息,那就要看运行时来决定了。

C语言中,在编译期,函数的调用就会决定调用哪个函数。
而OC的函数,属于动态调用过程,在编译期并不能决定真正调用哪个函数,只有在真正运行时才会根据函数的名称找到对应的函数来调用。

Objective-C 是一个动态语言,这意味着它不仅需要一个编译器,也需要一个运行时系统来动态得创建类和对象、进行消息传递和转发。

Objc 在三种层面上与 Runtime 系统进行交互:

神经病院Objective-C Runtime入院第一天—isa和Class

1. 通过 Objective-C 源代码

一般情况开发者只需要编写 OC 代码即可,Runtime 系统自动在幕后把我们写的源代码在编译阶段转换成运行时代码,在运行时确定对应的数据结构和调用具体哪个方法。

2. 通过 Foundation 框架的 NSObject 类定义的方法

在OC的世界中,除了NSProxy类以外,所有的类都是NSObject的子类。在Foundation框架下,NSObject和NSProxy两个基类,定义了类层次结构中该类下方所有类的公共接口和行为。NSProxy是专门用于实现代理对象的类,这个类暂时本篇文章不提。这两个类都遵循了NSObject协议。在NSObject协议中,声明了所有OC对象的公共方法。

在NSObject协议中,有以下5个方法,是可以从Runtime中获取信息,让对象进行自我检查。

- (Class)class OBJC_SWIFT_UNAVAILABLE("use 'anObject.dynamicType' instead"); - (BOOL)isKindOfClass:(Class)aClass; - (BOOL)isMemberOfClass:(Class)aClass; - (BOOL)conformsToProtocol:(Protocol *)aProtocol; - (BOOL)respondsToSelector:(SEL)aSelector;

-class方法返回对象的类;
-isKindOfClass: 和 -isMemberOfClass: 方法检查对象是否存在于指定的类的继承体系中(是否是其子类或者父类或者当前类的成员变量);
-respondsToSelector: 检查对象能否响应指定的消息;
-conformsToProtocol:检查对象是否实现了指定协议类的方法;

在NSObject的类中还定义了一个方法

- (IMP)methodForSelector:(SEL)aSelector;

这个方法会返回指定方法实现的地址IMP。

以上这些方法会在本篇文章中详细分析具体实现。

3. 通过对 Runtime 库函数的直接调用

关于库函数可以在Objective-C Runtime Reference中查看 Runtime 函数的详细文档。

关于这一点,其实还有一个小插曲。当我们导入了objc/Runtime.h和objc/message.h两个头文件之后,我们查找到了Runtime的函数之后,代码打完,发现没有代码提示了,那些函数里面的参数和描述都没有了。对于熟悉Runtime的开发者来说,这并没有什么难的,因为参数早已铭记于胸。但是对于新手来说,这是相当不友好的。而且,如果是从iOS6开始开发的同学,依稀可能能感受到,关于Runtime的具体实现的官方文档越来越少了?可能还怀疑是不是错觉。其实从Xcode5开始,苹果就不建议我们手动调用Runtime的API,也同样希望我们不要知道具体底层实现。所以IDE上面默认代了一个参数,禁止了Runtime的代码提示,源码和文档方面也删除了一些解释。

具体设置如下:

神经病院Objective-C Runtime入院第一天—isa和Class

如果发现导入了两个库文件之后,仍然没有代码提示,就需要把这里的设置改成NO,即可。

二. NSObject起源

由上面一章节,我们知道了与Runtime交互有3种方式,前两种方式都与NSObject有关,那我们就从NSObject基类开始说起。

神经病院Objective-C Runtime入院第一天—isa和Class

以下源码分析均来自objc4-680

NSObject的定义如下

typedef struct objc_class *Class;  @interface NSObject <NSObject> {     Class isa  OBJC_ISA_AVAILABILITY; }

在Objc2.0之前,objc_class源码如下:

struct objc_class {     Class isa  OBJC_ISA_AVAILABILITY;  #if !__OBJC2__     Class super_class                                        OBJC2_UNAVAILABLE;     const char *name                                         OBJC2_UNAVAILABLE;     long version                                             OBJC2_UNAVAILABLE;     long info                                                OBJC2_UNAVAILABLE;     long instance_size                                       OBJC2_UNAVAILABLE;     struct objc_ivar_list *ivars                             OBJC2_UNAVAILABLE;     struct objc_method_list **methodLists                    OBJC2_UNAVAILABLE;     struct objc_cache *cache                                 OBJC2_UNAVAILABLE;     struct objc_protocol_list *protocols                     OBJC2_UNAVAILABLE; #endif  } OBJC2_UNAVAILABLE;

在这里可以看到,在一个类中,有超类的指针,类名,版本的信息。
ivars是objc_ivar_list成员变量列表的指针;methodLists是指向objc_method_list指针的指针。*methodLists是指向方法列表的指针。这里如果动态修改*methodLists的值来添加成员方法,这也是Category实现的原理,同样解释了Category不能添加属性的原因。

关于Category,这里推荐2篇文章可以仔细研读一下。
深入理解Objective-C:Category
结合 Category 工作原理分析 OC2.0 中的 runtime

然后在2006年苹果发布Objc 2.0之后,objc_class的定义就变成下面这个样子了。

typedef struct objc_class *Class; typedef struct objc_object *id;  @interface Object {      Class isa;  }  @interface NSObject <NSObject> {     Class isa  OBJC_ISA_AVAILABILITY; }  struct objc_object { private:     isa_t isa; }  struct objc_class : objc_object {     // Class ISA;     Class superclass;     cache_t cache;             // formerly cache pointer and vtable     class_data_bits_t bits;    // class_rw_t * plus custom rr/alloc flags }  union isa_t  {     isa_t() { }     isa_t(uintptr_t value) : bits(value) { }     Class cls;     uintptr_t bits; }
神经病院Objective-C Runtime入院第一天—isa和Class

把源码的定义转化成类图,就是上图的样子。

从上述源码中,我们可以看到,Objective-C 对象都是 C 语言结构体实现的,在objc2.0中,所有的对象都会包含一个isa_t类型的结构体。

objc_object被源码typedef成了id类型,这也就是我们平时遇到的id类型。这个结构体中就只包含了一个isa_t类型的结构体。这个结构体在下面会详细分析。

objc_class继承于objc_object。所以在objc_class中也会包含isa_t类型的结构体isa。至此,可以得出结论:Objective-C 中类也是一个对象。在objc_class中,除了isa之外,还有3个成员变量,一个是父类的指针,一个是方法缓存,最后一个这个类的实例方法链表。

object类和NSObject类里面分别都包含一个objc_class类型的isa。

上图的左半边类的关系描述完了,接着先从isa来说起。

当一个对象的实例方法被调用的时候,会通过isa找到相应的类,然后在该类的class_data_bits_t中去查找方法。class_data_bits_t是指向了类对象的数据区域。在该数据区域内查找相应方法的对应实现。

但是在我们调用类方法的时候,类对象的isa里面是什么呢?这里为了和对象查找方法的机制一致,遂引入了元类(meta-class)的概念。

关于元类,更多具体可以研究这篇文章What is a meta-class in Objective-C?

在引入元类之后,类对象和对象查找方法的机制就完全统一了。

对象的实例方法调用时,通过对象的 isa 在类中获取方法的实现。
类对象的类方法调用时,通过类的 isa 在元类中获取方法的实现。

meta-class之所以重要,是因为它存储着一个类的所有类方法。每个类都会有一个单独的meta-class,因为每个类的类方法基本不可能完全相同。

对应关系的图如下图,下图很好的描述了对象,类,元类之间的关系:

神经病院Objective-C Runtime入院第一天—isa和Class

图中实线是 super_class指针,虚线是isa指针。

  1. Root class (class)其实就是NSObject,NSObject是没有超类的,所以Root class(class)的superclass指向nil。
  2. 每个Class都有一个isa指针指向唯一的Meta class
  3. Root class(meta)的superclass指向Root class(class),也就是NSObject,形成一个回路。
  4. 每个Meta class的isa指针都指向Root class (meta)。

我们其实应该明白,类对象和元类对象是唯一的,对象是可以在运行时创建无数个的。而在main方法执行之前,从 dyld到runtime这期间,类对象和元类对象在这期间被创建。具体可看sunnyxx这篇iOS 程序 main 函数之前发生了什么

(1)isa_t结构体的具体实现

接下来我们就该研究研究isa的具体实现了。objc_object里面的isa是isa_t类型。通过查看源码,我们可以知道isa_t是一个union联合体。

struct objc_object { private:     isa_t isa; public:     // initIsa() should be used to init the isa of new objects only.     // If this object already has an isa, use changeIsa() for correctness.     // initInstanceIsa(): objects with no custom RR/AWZ     void initIsa(Class cls /*indexed=false*/);     void initInstanceIsa(Class cls, bool hasCxxDtor); private:     void initIsa(Class newCls, bool indexed, bool hasCxxDtor); }

那就从initIsa方法开始研究。下面以arm64为例。

inline void objc_object::initInstanceIsa(Class cls, bool hasCxxDtor) {     initIsa(cls, true, hasCxxDtor); }  inline void objc_object::initIsa(Class cls, bool indexed, bool hasCxxDtor) {     if (!indexed) {         isa.cls = cls;     } else {         isa.bits = ISA_MAGIC_VALUE;         isa.has_cxx_dtor = hasCxxDtor;         isa.shiftcls = (uintptr_t)cls >> 3;     } }

initIsa第二个参数传入了一个true,所以initIsa就会执行else里面的语句。

# if __arm64__ #   define ISA_MASK        0x0000000ffffffff8ULL #   define ISA_MAGIC_MASK  0x000003f000000001ULL #   define ISA_MAGIC_VALUE 0x000001a000000001ULL     struct {         uintptr_t indexed           : 1;         uintptr_t has_assoc         : 1;         uintptr_t has_cxx_dtor      : 1;         uintptr_t shiftcls          : 33; // MACH_VM_MAX_ADDRESS 0x1000000000         uintptr_t magic             : 6;         uintptr_t weakly_referenced : 1;         uintptr_t deallocating      : 1;         uintptr_t has_sidetable_rc  : 1;         uintptr_t extra_rc          : 19; #       define RC_ONE   (1ULL<<45) #       define RC_HALF  (1ULL<<18)     };  # elif __x86_64__ #   define ISA_MASK        0x00007ffffffffff8ULL #   define ISA_MAGIC_MASK  0x001f800000000001ULL #   define ISA_MAGIC_VALUE 0x001d800000000001ULL     struct {         uintptr_t indexed           : 1;         uintptr_t has_assoc         : 1;         uintptr_t has_cxx_dtor      : 1;         uintptr_t shiftcls          : 44; // MACH_VM_MAX_ADDRESS 0x7fffffe00000         uintptr_t magic             : 6;         uintptr_t weakly_referenced : 1;         uintptr_t deallocating      : 1;         uintptr_t has_sidetable_rc  : 1;         uintptr_t extra_rc          : 8; #       define RC_ONE   (1ULL<<56) #       define RC_HALF  (1ULL<<7)     };
神经病院Objective-C Runtime入院第一天—isa和Class

ISA_MAGIC_VALUE = 0x000001a000000001ULL转换成二进制是11010000000000000000000000000000000000001,结构如下图:

神经病院Objective-C Runtime入院第一天—isa和Class

关于参数的说明:

第一位index,代表是否开启isa指针优化。index = 1,代表开启isa指针优化。

在2013年9月,苹果推出了iPhone5s,与此同时,iPhone5s配备了首个采用64位架构的A7双核处理器,为了节省内存和提高执行效率,苹果提出了Tagged Pointer的概念。对于64位程序,引入Tagged Pointer后,相关逻辑能减少一半的内存占用,以及3倍的访问速度提升,100倍的创建、销毁速度提升。

在WWDC2013的《Session 404 Advanced in Objective-C》视频中,苹果介绍了 Tagged Pointer。 Tagged Pointer的存在主要是为了节省内存。我们知道,对象的指针大小一般是与机器字长有关,在32位系统中,一个指针的大小是32位(4字节),而在64位系统中,一个指针的大小将是64位(8字节)。

假设我们要存储一个NSNumber对象,其值是一个整数。正常情况下,如果这个整数只是一个NSInteger的普通变量,那么它所占用的内存是与CPU的位数有关,在32位CPU下占4个字节,在64位CPU下是占8个字节的。而指针类型的大小通常也是与CPU位数相关,一个指针所占用的内存在32位CPU下为4个字节,在64位CPU下也是8个字节。如果没有Tagged Pointer对象,从32位机器迁移到64位机器中后,虽然逻辑没有任何变化,但这种NSNumber、NSDate一类的对象所占用的内存会翻倍。如下图所示:

神经病院Objective-C Runtime入院第一天—isa和Class

苹果提出了Tagged Pointer对象。由于NSNumber、NSDate一类的变量本身的值需要占用的内存大小常常不需要8个字节,拿整数来说,4个字节所能表示的有符号整数就可以达到20多亿(注:2^31=2147483648,另外1位作为符号位),对于绝大多数情况都是可以处理的。所以,引入了Tagged Pointer对象之后,64位CPU下NSNumber的内存图变成了以下这样:

神经病院Objective-C Runtime入院第一天—isa和Class

关于Tagged Pointer技术详细的,可以看上面链接那个文章。

has_assoc
对象含有或者曾经含有关联引用,没有关联引用的可以更快地释放内存

has_cxx_dtor
表示该对象是否有 C++ 或者 Objc 的析构器

shiftcls
类的指针。arm64架构中有33位可以存储类指针。

源码中isa.shiftcls = (uintptr_t)cls >> 3;
将当前地址右移三位的主要原因是用于将 Class 指针中无用的后三位清除减小内存的消耗,因为类的指针要按照字节(8 bits)对齐内存,其指针后三位都是没有意义的 0。具体可以看从 NSObject 的初始化了解 isa这篇文章里面的shiftcls分析。

magic
判断对象是否初始化完成,在arm64中0x16是调试器判断当前对象是真的对象还是没有初始化的空间。

weakly_referenced
对象被指向或者曾经指向一个 ARC 的弱变量,没有弱引用的对象可以更快释放

deallocating
对象是否正在释放内存

has_sidetable_rc
判断该对象的引用计数是否过大,如果过大则需要其他散列表来进行存储。

extra_rc
存放该对象的引用计数值减一后的结果。对象的引用计数超过 1,会存在这个这个里面,如果引用计数为 10,extra_rc的值就为 9。

ISA_MAGIC_MASK 和 ISA_MASK 分别是通过掩码的方式获取MAGIC值 和 isa类指针。

inline Class  objc_object::ISA()  {     assert(!isTaggedPointer());      return (Class)(isa.bits & ISA_MASK); }

关于x86_64的架构,具体可以看从 NSObject 的初始化了解 isa文章里面的详细分析。

(2)cache_t的具体实现

还是继续看源码

struct cache_t {     struct bucket_t *_buckets;     mask_t _mask;     mask_t _occupied; }  typedef unsigned int uint32_t; typedef uint32_t mask_t;  // x86_64 & arm64 asm are less efficient with 16-bits  typedef unsigned long  uintptr_t; typedef uintptr_t cache_key_t;  struct bucket_t { private:     cache_key_t _key;     IMP _imp; }
神经病院Objective-C Runtime入院第一天—isa和Class

根据源码,我们可以知道cache_t中存储了一个bucket_t的结构体,和两个unsigned int的变量。

mask:分配用来缓存bucket的总数。
occupied:表明目前实际占用的缓存bucket的个数。

bucket_t的结构体中存储了一个unsigned long和一个IMP。IMP是一个函数指针,指向了一个方法的具体实现。

cache_t中的bucket_t *_buckets其实就是一个散列表,用来存储Method的链表。

Cache的作用主要是为了优化方法调用的性能。当对象receiver调用方法message时,首先根据对象receiver的isa指针查找到它对应的类,然后在类的methodLists中搜索方法,如果没有找到,就使用super_class指针到父类中的methodLists查找,一旦找到就调用方法。如果没有找到,有可能消息转发,也可能忽略它。但这样查找方式效率太低,因为往往一个类大概只有20%的方法经常被调用,占总调用次数的80%。所以使用Cache来缓存经常调用的方法,当调用方法时,优先在Cache查找,如果没有找到,再到methodLists查找。

(3)class_data_bits_t的具体实现

源码实现如下:

struct class_data_bits_t {      // Values are the FAST_ flags above.     uintptr_t bits; }  struct class_rw_t {     uint32_t flags;     uint32_t version;      const class_ro_t *ro;      method_array_t methods;     property_array_t properties;     protocol_array_t protocols;      Class firstSubclass;     Class nextSiblingClass;      char *demangledName; }  struct class_ro_t {     uint32_t flags;     uint32_t instanceStart;     uint32_t instanceSize; #ifdef __LP64__     uint32_t reserved; #endif      const uint8_t * ivarLayout;      const char * name;     method_list_t * baseMethodList;     protocol_list_t * baseProtocols;     const ivar_list_t * ivars;      const uint8_t * weakIvarLayout;     property_list_t *baseProperties;      method_list_t *baseMethods() const {         return baseMethodList;     } };
神经病院Objective-C Runtime入院第一天—isa和Class

在 objc_class结构体中的注释写到 class_data_bits_t相当于 class_rw_t指针加上 rr/alloc 的标志。

class_data_bits_t bits; // class_rw_t * plus custom rr/alloc flags

它为我们提供了便捷方法用于返回其中的 class_rw_t *指针:

class_rw_t *data() {     return bits.data(); }

Objc的类的属性、方法、以及遵循的协议在obj 2.0的版本之后都放在class_rw_t中。class_ro_t是一个指向常量的指针,存储来编译器决定了的属性、方法和遵守协议。rw-readwrite,ro-readonly

在编译期类的结构中的 class_data_bits_t *data指向的是一个 class_ro_t *指针:

神经病院Objective-C Runtime入院第一天—isa和Class

在运行时调用 realizeClass方法,会做以下3件事情:

  1. 从 class_data_bits_t调用 data方法,将结果从 class_rw_t强制转换为 class_ro_t指针
  2. 初始化一个 class_rw_t结构体
  3. 设置结构体 ro的值以及 flag

最后调用methodizeClass方法,把类里面的属性,协议,方法都加载进来。

struct method_t {     SEL name;     const char *types;     IMP imp;      struct SortBySELAddress :         public std::binary_function<const method_t&,                                     const method_t&, bool>     {         bool operator() (const method_t& lhs,                          const method_t& rhs)         { return lhs.name < rhs.name; }     }; };

方法method的定义如上。里面包含3个成员变量。SEL是方法的名字name。types是Type Encoding类型编码,类型可参考Type Encoding,在此不细说。

IMP是一个函数指针,指向的是函数的具体实现。在runtime中消息传递和转发的目的就是为了找到IMP,并执行函数。

整个运行时过程可以描述如下:

神经病院Objective-C Runtime入院第一天—isa和Class

更加详细的分析,请看@Draveness 的这篇文章深入解析 ObjC 中方法的结构

到此,总结一下objc_class 1.0和2.0的差别。

神经病院Objective-C Runtime入院第一天—isa和Class

神经病院Objective-C Runtime入院第一天—isa和Class

三. 入院考试

神经病院Objective-C Runtime入院第一天—isa和Class

(一)[self class] 与 [super class]

下面代码输出什么?

 @implementation Son : Father - (id)init {     self = [super init];     if (self)     {         NSLog(@"%@", NSStringFromClass([self class]));         NSLog(@"%@", NSStringFromClass([super class]));     } return self; } @end

self和super的区别:

self是类的一个隐藏参数,每个方法的实现的第一个参数即为self。

super并不是隐藏参数,它实际上只是一个”编译器标示符”,它负责告诉编译器,当调用方法时,去调用父类的方法,而不是本类中的方法。

在调用[super class]的时候,runtime会去调用objc_msgSendSuper方法,而不是objc_msgSend

OBJC_EXPORT void objc_msgSendSuper(void /* struct objc_super *super, SEL op, ... */ )   /// Specifies the superclass of an instance.  struct objc_super {     /// Specifies an instance of a class.     __unsafe_unretained id receiver;      /// Specifies the particular superclass of the instance to message.  #if !defined(__cplusplus)  &&  !__OBJC2__     /* For compatibility with old objc-runtime.h header */     __unsafe_unretained Class class; #else     __unsafe_unretained Class super_class; #endif     /* super_class is the first class to search */ };

在objc_msgSendSuper方法中,第一个参数是一个objc_super的结构体,这个结构体里面有两个变量,一个是接收消息的receiver,一个是
当前类的父类super_class。

入院考试第一题错误的原因就在这里,误认为[super class]是调用的[super_class class]。

objc_msgSendSuper的工作原理应该是这样的:
从objc_super结构体指向的superClass父类的方法列表开始查找selector,找到后以objc->receiver去调用这个selector。注意,最后的调用者是objc->receiver,而不是super_class!

那么objc_msgSendSuper最后就转变成

objc_msgSend(objc_super->receiver, @selector(class))

objc_super->receiver = self。所以最后输出两个都一样,都是输出son。

(二)isKindOfClass 与 isMemberOfClass

下面代码输出什么?

 @interface Sark : NSObject  @end   @implementation Sark  @end   int main(int argc, const char * argv[]) { @autoreleasepool {     BOOL res1 = [(id)[NSObject class] isKindOfClass:[NSObject class]];     BOOL res2 = [(id)[NSObject class] isMemberOfClass:[NSObject class]];     BOOL res3 = [(id)[Sark class] isKindOfClass:[Sark class]];     BOOL res4 = [(id)[Sark class] isMemberOfClass:[Sark class]];     NSLog(@"%d %d %d %d", res1, res2, res3, res4); } return 0; }

先来分析一下源码这两个函数的对象实现

+ (Class)class {     return self; }  - (Class)class {     return object_getClass(self); }  Class object_getClass(id obj) {     if (obj) return obj->getIsa();     else return Nil; }  inline Class  objc_object::getIsa()  {     if (isTaggedPointer()) {         uintptr_t slot = ((uintptr_t)this >> TAG_SLOT_SHIFT) & TAG_SLOT_MASK;         return objc_tag_classes[slot];     }     return ISA(); }  inline Class  objc_object::ISA()  {     assert(!isTaggedPointer());      return (Class)(isa.bits & ISA_MASK); }  + (BOOL)isKindOfClass:(Class)cls {     for (Class tcls = object_getClass((id)self); tcls; tcls = tcls->superclass) {         if (tcls == cls) return YES;     }     return NO; }  - (BOOL)isKindOfClass:(Class)cls {     for (Class tcls = [self class]; tcls; tcls = tcls->superclass) {         if (tcls == cls) return YES;     }     return NO; }  + (BOOL)isMemberOfClass:(Class)cls {     return object_getClass((id)self) == cls; }  - (BOOL)isMemberOfClass:(Class)cls {     return [self class] == cls; }

首先题目中NSObject 和 Sark分别调用了class方法。

+ (BOOL)isKindOfClass:(Class)cls方法内部,会先去获得object_getClass的类,而object_getClass的源码实现是去调用当前类的obj->getIsa(),最后在ISA()方法中获得meta class的指针。

接着在isKindOfClass中有一个循环,先判断class是否等于meta class,不等就继续循环判断是否等于super class,不等再继续取super class,如此循环下去。

[NSObject class]执行完之后调用isKindOfClass,第一次判断先判断NSObject 和 NSObject的meta class是否相当,之前讲到meta class的时候放了一张很详细的图,从图上我们也可以看出,NSObject的meta class与本身不等。接着第二次循环判断NSObject与meta class的superclass是否相当。还是从那张图上面我们可以看到:Root class(meta) 的superclass 就是 Root class(class),也就是NSObject本身。所以第二次循环相等,于是第一行res1输出应该为YES。

同理,[Sark class]执行完之后调用isKindOfClass,第一次for循环,Sark的Meta Class与[Sark class]不等,第二次for循环,Sark Meta Class的super class 指向的是 NSObject Meta Class, 和 Sark Class不相等。第三次for循环,NSObject Meta Class的super class指向的是NSObject Class,和 Sark Class 不相等。第四次循环,NSObject Class 的super class 指向 nil, 和 Sark Class不相等。第四次循环之后,退出循环,所以第三行的res3输出为NO。

如果把这里的Sark改成它的实例对象,[sark isKindOfClass:[Sark class],那么此时就应该输出YES了。因为在isKindOfClass函数中,判断sark的meta class是自己的元类Sark,第一次for循环就能输出YES了。

isMemberOfClass的源码实现是拿到自己的isa指针和自己比较,是否相等。
第二行isa 指向 NSObject 的 Meta Class,所以和 NSObject Class不相等。第四行,isa指向Sark的Meta Class,和Sark Class也不等,所以第二行res2和第四行res4都输出NO。

(三)Class与内存地址

下面的代码会?Compile Error / Runtime Crash / NSLog…?

@interface Sark : NSObject @property (nonatomic, copy) NSString *name; - (void)speak; @end @implementation Sark - (void)speak {     NSLog(@"my name's %@", self.name); } @end @implementation ViewController - (void)viewDidLoad {     [super viewDidLoad];     id cls = [Sark class];     void *obj = &cls;     [(__bridge id)obj speak]; } @end

这道题有两个难点。难点一,obj调用speak方法,到底会不会崩溃。难点二,如果speak方法不崩溃,应该输出什么?

首先需要谈谈隐藏参数self和_cmd的问题。
当[receiver message]调用方法时,系统会在运行时偷偷地动态传入两个隐藏参数self和_cmd,之所以称它们为隐藏参数,是因为在源代码中没有声明和定义这两个参数。self在上面已经讲解明白了,接下来就来说说_cmd。_cmd表示当前调用方法,其实它就是一个方法选择器SEL。

难点一,能不能调用speak方法?

id cls = [Sark class];  void *obj = &cls;

答案是可以的。obj被转换成了一个指向Sark Class的指针,然后使用id转换成了objc_object类型。obj现在已经是一个Sark类型的实例对象了。当然接下来可以调用speak的方法。

难点二,如果能调用speak,会输出什么呢?

很多人可能会认为会输出sark相关的信息。这样答案就错误了。

正确的答案会输出

my name is <ViewController: 0x7ff6d9f31c50>

内存地址每次运行都不同,但是前面一定是ViewController。why?

我们把代码改变一下,打印更多的信息出来。

- (void)viewDidLoad {     [super viewDidLoad];      NSLog(@"ViewController = %@ , 地址 = %p", self, &self);      id cls = [Sark class];     NSLog(@"Sark class = %@ 地址 = %p", cls, &cls);      void *obj = &cls;     NSLog(@"Void *obj = %@ 地址 = %p", obj,&obj);      [(__bridge id)obj speak];      Sark *sark = [[Sark alloc]init];     NSLog(@"Sark instance = %@ 地址 = %p",sark,&sark);      [sark speak];  }

我们把对象的指针地址都打印出来。输出结果:

ViewController = <ViewController: 0x7fb570e2ad00> , 地址 = 0x7fff543f5aa8 Sark class = Sark 地址 = 0x7fff543f5a88 Void *obj = <Sark: 0x7fff543f5a88> 地址 = 0x7fff543f5a80  my name is <ViewController: 0x7fb570e2ad00>  Sark instance = <Sark: 0x7fb570d20b10> 地址 = 0x7fff543f5a78 my name is (null)

按viewDidLoad执行时各个变量入栈顺序从高到底为self, _cmd, self.class, self, obj。

第一个self和第二个_cmd是隐藏参数。第三个self.class和第四个self是[super viewDidLoad]方法执行时候的参数。

在调用self.name的时候,本质上是self指针在内存向高位地址偏移一个指针。在32位下面,一个指针是4字节=4*8bit=32bit。

从打印结果我们可以看到,obj就是cls的地址。在obj向上偏移32bit就到了0x7fff543f5aa8,这正好是ViewController的地址。

所以输出为my name is <ViewController: 0x7fb570e2ad00>。

入院考试由于还有一题没有解答出来,所以医院决定让我住院一天观察。

未完待续,请大家多多指教。

转载本站任何文章请注明:转载至神刀安全网,谢谢神刀安全网 » 神经病院Objective-C Runtime入院第一天—isa和Class

分享到:更多 ()

评论 抢沙发

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址